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The coefficients, a 1, a2, a 3, a 4, of (12) enable us then 
to calculate the four transit ion probabilities ~ .  

(2) 'Growth and deformation or transformation stacking 
faults' in hexagonal close-packed and cubic face centred 
crystals 
(a) Hexagonal close.packing.--Broadened maxima 

occur for A a = 0 and A a = z~ (rood. 2~t), and 

1 ( 1 - ~ ) - 3 ( 1 - 2 a )  7 ] 
e° = 2---~" 3 [ ~ ÷ ( 1 - 2 ~ ) 7 ]  ' 

1 3 [ ( 1 - - ~ ) -  ( 1 - 2 ~ ) 7 ]  
e~ = 2z" c~+3(1-2~) 7 " 

(41) 

Thus ~ and fl can be calculated with the aid of (41). 

(b) Cubic close.packing.--Minima occur for A 3 - - 0  
and A 3 = 7~ (mod. 2~t); (41) is still valid and can 
eventually be used to calculate ~ and ft. Broadened 
maxima occur for 

A 3 ~--4-0 (mod. 27t), (42) 

where 0 is the root of (37), which will move towards 
A 3 = ±2~/3  (rood. 2~) as c~-~ 1 and fl-+ 0 or 1. 

With  the aid of (42) and e±0, ~ and fl can again 
be calculated. When ~ = 1 (face centred cubic with- 
out 'growth faults'), we obtain the same equation (18), 
but  the further calculations are different (Paterson, 
1952). 
(3) 

For an hk-crystal we obtain from (38): 

1 ½ - 3 7 ( 1 - 3 7  ) 1 ½ - 7 ( 2 - 3 7 )  
eo = 2---~" 3 7 ( 2 - 3 7 )  ' e±~/2 = ~ 7 (2_37  ) 

1 3 [ ½ - 7 ( 1 - 7 ) ]  
e . = ~ - ~  7 (2_37  ) • 

(4) 
For  an hkk-crystal we obtain from (39): 

(43) 

1 7 ( 4 - 9 7 )  
e 0 = ~ 3 ( 1 - 3 7 + 3 7 2 )  ' 

1 2 - 1 4 7 + 5 1 7 2 - 5 4 7 3  
e±2./e = ~ "  187 (1_37+372)  , 

1 4 -107+3079" -2773  

e== ~-~" 97(1_374372)  , 
1 2--107+2372÷1873 (44) 

e±~/3 = -2-~" 67(1_37+379) • 

With  one of the formulae (43) and one of the formulae 
(44) we can calculate fl in either case. 

The author is grateful to Prof. W. Dekeyser for the 
stimulating interest taken in this work, which is par t  
of a research program (C.E.S.) supported by I .R.S.I .A. 
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A Direct  Approach  to the D e t e r m i n a t i o n  of Crystal  S tructures  
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A direct method of solution of the X-ray crystallographic problem is described, which consists 
in tabulating the complete function connecting the structure factor with the atomic positions. 
The successive steps of the solution can be interpreted as intersections of (/V--1)-dimensional sur- 
faces in /V-dimensional space, where N is the number of unknown co-ordinates. A card index, 
graphs and tables have been prepared and published for a one-dimensional unit cell with no centre 
of symmetry containing up to four equal point atoms and, with centre of symmetry, up to ten equal 
point atoms per cell. Centrosymmetric structures with up to twenty atoms per cell can be solved 
by a single convolution of the above tables. 

In troduc t ion  

The determination of crystal structures and the 
corresponding phase problem of X-ray  crystallography 

* Imperial Chemical Industries Research Fellow. Present 
address: Physics Department, Pennsylvania State Universivy, 
State College, Pennsylvania, U.S.A. 

has been at tacked in the past  by  a var ie ty  of methods. 
If the direct methods applicable to special cases, such 
as the heavy-atom and the isomorphous-replacement 
methods, are not  considered, the usual methods are 
those of trial and error, Pat terson synthesis and its 
variants,  Harker -Kasper  inequalities, solution of poly- 
nomials, and statistical methods. 
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In  this contribution, a novel approach to the prob- 
lem is sought. I t  consists in a fundamentally very 
simple idea of preparation of tables (Vand, 1953) which 
would contain calculated structure factors for all the 
possible structures. If one wishes to solve a structure, 
all tha t  is necessary is to search the tables until a 
structure is found the structure factors of which (or 
their moduli) agree with the observed values. The 
process of solution then essentially consists of a sorting 
operation, which can be done by hand or by means 
of punched-card machines. Structures having given 
values of structure factors are selected and the un- 
known structure is contained within the selected solu- 
tions. 

Although the method is quite general and straight- 
forward, it  has a severe limitation. If a function is 
tabulated, it  is necessary to choose a finite tabulation 
interval. If there are n atoms per unit cell and if we 
let them roam independently through the full range 
of co-ordinate X~ from 0 to 1, subdivided by  tabula- 
tion interval into m points, there will be m n table 
entries. This, for reasonable values of m and n, can 
be a very large number. Great simplification ensues 
if we assume equal point atoms, to which case many 
organic structures can be reduced. Then we can inter- 
change the atoms without altering the structure, and 
the number of entries is reduced to (n+m)!/n!. m! 
~r a similar expression, which is a much smaller num- 
ber. However, even then the number of table entries 
is prohibitive for a three- or a two-dimensional unit 
cell, so tha t  in practice the method in its present form 
is limited to: (1) a one-dimensional unit cell, with a 
comparatively coarse tabulation interval; (2) a limited 
number of equal point atoms per unit  cell. 

The practical problem is often further complicated 
by lack of exact knowledge of such data  as the ab- 
solute scale of the intensities, the magnitude of the 
temperature factor, presence of not strictly equal atoms 
and of experimental errors. In  this paper, we shall 
neglect these complications by assuming tha t  the 
uni tary  'reduced' structure factors, or their moduli, 
referring to 'point atoms',  are known without error 
on an absolute scale. Only one-dimensional projections 
of a three-dimensional cell can be considered at  the 
present stage. 

Guided by the above considerations, tables for direct 
determination of one-dimensional crystal structures 
have been prepared for a one-dimensional unit cell 
with up to four equal ~tom~ per cell ~nd no c~ntr~ 
o~ symmetry  and up to ten equal atoms per cell and 
a centre of symmetry.  The unit  cell has been subdi- 
vided into m = 16 equal  intervals. For a eentrosym- 
metrical crystal with equal point atoms the number 
of entries is 

+m)}!. 
' 

this, for n = 10 and m = 16, amounts to 1287 entries, 
which can be easily managed by hand. Reduced strut-  

ture factors, referring to point atoms, are calculated 
up to the eighth order. 

The sorting operation is assisted by rearranging the 
tables on cards in order of the increasing first, second, 
etc., structure factor. There is, however, one compli- 
cation which is common to tabular  representation of 
any function with several variables, and which arises 
from the finite and constant tabulation interval of one 
set of variables and from the subsequent inversion of 
the tables. In  order to elucidate the nature of the 
problem, it  is useful to revert  to the representation 
of the multivariable functions as vectors in multi-di- 
mensional spaces. 

T h e  u s e  of  N - d i m e n s i o n a l  s p a c e  

The N unknown co-ordinates of atoms, X~, can be 
formally regarded as components of a single vector 
X in N-dimensional space and similarly the H cal- 
culated structure factors F(h) can be regarded as 
components of a single vector F in H-dimensional 
space. The vector F is then a function of the vector 
X and vice versa. The two spaces differ in tha t  
the space containing vector X is periodic. As Xi 
are fractional co-ordinates, they  can have any prin- 
cipal value 0 _< X~ _< 1, so tha t  the principal vec- 
tors X representing all the possible structures fill 
one N-dimensional cell of side 1, the principal cell. 
Suppose tha t  one of the values of IF(h)] is known. Then 
the equation connecting ]F(h)l with X~ imposes a 
constraint on the possible vectors X, decreasing the 
degree of freedom by one. These vectors X are con- 
strained to a (N-1)-dimensional  surface Sh which de- 
fines the locus of all the possible structures having 
a given value of IF(h)[. If a set of values IF(l)], [F(2)[, 
. . . .  [F(H)[ is given, then it is possible, in principle, 
to construct first the surface S 1 and then S 2 and to 
find their intersection. This will result generally in a 
(N-2)-dimensional  space, representing all the possible 
structures having a given value of [F(1)[ and [F(2)[. 
The intersection of this space with $3 will, in general, 
be a (N-3)-dimensional  sub-space, etc., until the 
final intersection with SH will have (N-H)degrees 
of freedom and dimensions, provided the surfaces are 
non-parallel at the locus of intersect ion--a condition 
analogous to tha t  of a non-vanishing determinant of 
a system of linear equations. If this condition is ful- 
filled and H -- N, the solution, if it exists, will reduce 
to discrete p0ints--the h0m0metric structures 0f Pat. 
terson. If H > N and the system is self-consistent, 
further surfaces Sh with h > N must  pass through the 
solution, if the solution exists. 

For a centrosymmetrical structure, each surface Sh 
splits into two branches, corresponding to F(h) and 
to -F(h). If the sign is known, only the appropriate 
branch is used, but  the argument is not affected by  
the lack of the knowledge of the sign of F(h), the only 
consequence being tha t  the number of possible solu- 
tions may  be increased. 
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Fig. 1. Graph of $'(1) versus F(2) for n = 4 (centrosymmetrical cell). Co-ordinates of atoms 
in 16ths of unit cell shown at each grid point. Scale: $'(0) = 20. 

The table entries represent the principal N-dimen- 
sional cell sampled at all the points of a grid in mths 
of its cell edges. To each grid point, H values of F(h) 
are given in the tables. The (N-1)-dimensional sur- 
face S 1 can thus be immediately obtained by a simple 
selection of all the table entries with" a given value 
of F(1). Intersections of S 1 with further surfaces S~, 
Sa, . . .  are then obtained by further selections (or 
sortings, if the tables are transferred on cards). The 
sortings are carried out as far as desired; the extracted 
entries then represent the final intersection, which 
necessarily contains the true solution. 

However, difficulty arises because the functions 
F(h) are sampled over a finite grid and the required 
surfaces Sh are infinitely thin and would normally pass 
between the grid points. In order to ensure that  there 
is no loss of solutions arising from the coarseness of 
the grid, it is necessary to take, instead of a surface 

S, a slab of such thickness as to enclose sufficient grid 
points defining the location of S. 

This problem can be regarded from another point 
of view: The N-dimensional principal cell is subdivided 
by the grid used into m ~ smaller cells, the grid cells, 
each of edges 1/m. The true solution necessarily falls 
within one such grid cell, but it can be located in the 
tables only by means of one of the available grid 
points. Its distance from the nearest grid point is less 
than 1/2m in space of the vector X, but an unknown 
distance in space of vector F. If the slab thickness is 
taken so as to include all the points less than 1/2m 
distant from S in X, it will be certain that  the final 
selection of points will contain the nearest grid point 
to the true solution. However, practical use of the 
method reveals that  such a slab thickness is not econo- 
mical. I t  is better to replace the above condition by 
another that  the slab should contain at least one 
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corner of the grid cell containing the true solution. 
This relaxation in X decreases considerably the slab 
thickness in F and the final volume of the intersection 
of slabs which contains the solution, and also it makes 
t h e  slab thickness nearly independent of the number 
of atoms per cell. 

This condition amounts to the relaxation of the 
localization of the solution by a factor 2 in each direc- 
t ion of the N-dimensional space. There are now 2 ~ 
corners to choose from, and as the sign of the error 
in each cosine contribution can be arbitrary, the slab 
thickness decreases considerably. I t  is a function of h 
which has not yet  been calculated theoretically. Tables 
of the slab thickness were prepared from a solution 
of a number of random examples. Using these slab 
thicknesses, numerous one-dimensional examples ta- 
ken with non-integral co-ordinates drawn at  random 
were rapidly solved by this method. For 10 atoms per 
cell, the solution takes by hand only about a quarter 
of an hour. One might at first expect tha t  as the selec- 
t ion is done regardless of sign of the structure factors, 
a large number of solutions corresponding to all the 
possible combinations of the signs will result. This is, 
however, not the case. Usually only two or three com- 
binati0ns of signs remain, as the tables impose the 
conditions of point atoms and non-negativity of elec- 
t ron  density. 

Graphical representations 

The relations between any set of structure factors 
can be represented graphically by plotting the results 
from the tables on a suitable graph. These graphs can 
then be used for visualization of various relations, 
such as inequalities, etc., and statistical relations. The 
most useful graph is with F(1) as abscissa and F(2) 
as ordinate. As an example, one such graph for n --- 4 
is shown in Fig. 1. This graph shows tha t  the possible 
solutions lie within a parabola which corresponds to 
the Harker-Kasper  inequality. In  addition, there are 
on the top of the graph further smaller parabolae, 
n / 2  in  number, which represent forbidden regions 
arising from the condition of point atoms. Such graphs 
can be produced for larger values of n by  a process 
of convolution of the smaller graphs. Such graphs are 
also useful for obtaining the first two selections by  

describing an area round a given point F(1), F(2), of 
a radius corresponding to the relevant slab thicknesses. 
The grid points within tha t  area are noted down and 
subjected to further selections as before. 

Conclusions 

I t  is still premature to consider the practical use- 
fulness of the method described above for practical 
solution of real crystal structures. I t  is true tha t  a 
three- or two-dimensional structure can be reduced to 
a number of one-dimensional projections along the cell 
edges and along the various diagonals. Although one 
can claim tha t  the one-dimensional problem is now 
practically solved for structures of a moderate com- 
plexity, this method may  represent a valuable aid for 
the solution of real structures rather than the answer 
to the problem. 

However, the main value of the present work may  
lie in giving us a deeper insight into the crystallo- 
graphic problem and in providing comprehensive ma- 
terial for testing other proposed methods for the deter- 
mination of crystal structures. I t  ha s  already proved 
valuable in testing the statistical random-walk prob- 
lem, recently used by Hauptman & Karle, and it 
has led to a general method for constructing proba- 
bility relations between the structure factors. I t  also 
brought valuable results in an investigation concerning 
Patterson's homometric pairs. These results will be 
reported in due course. 

I wish to thank my  wife for help in computations 
and Prof. J. Monteath Robertson for his great interest 
and encouragement. 
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